This is the reason why there may be sediment or even a gelatinous substance at the bottom of the bottle or canister.
Our olive oil is produced without additional filtration processes, so it retains all its natural characteristics and has a more intense and pure flavor and aroma. This can be reminiscent of the aroma and taste of fresh green olives.
Our olive oil cannot be found in any supermarket. You can check by yourself by buying a commercial one and comparing it with ours.
Our oil is packaged very fresh (usually the same day the olives have been harvested) to avoid the loss of its numerous medicinal properties and to avoid the oxidation process. However, this can lead to the appearance of bodies or mucilages with a gummy appearance in the lower third of the bottle or canister. These are actually bonds of waxes, gums, and phospholipids naturally present in olive oil.
Like some solids in suspension (pulp or pieces of olive skin) that tend to accumulate at the bottom of the bottle but this is not indicative of a bad state of the oil and can be easily separated by filtering.
Our aim is to offer the highest quality olive oil with a high content of polyphenols together with other medicinal components, and with a flavor and aroma as natural as possible. That is why we advise you to consume it raw to be able to take advantage of its great properties and to store it in a cool, dark place.
Another type of deposit that can form in the bottle or canister is that caused by low temperatures. When the temperature drops, the fatty acids will become solids and the oil will become more opaque, even creating whitish lumps. As the temperature rises, this effect will disappear. Again, this does not affect the oil, which keeps all its properties intact.
The advantage of extra virgin olive oil is that you can easily detect when it starts to go bad by changing its taste to a more rancid tone.
Unfiltered oil does have a slightly shorter shelf life than filtered oil, which is why choosing a cool and dark storage place is highly recommended.
Every year we aim to enhance the quality of our extra virgin olive oil. Through regenerative techniques, we are increasing the amount and diversity of microorganisms in the soil.
We are improving the water-holding capacity of the soil and increasing the levels of organic matter through the application of compost, wood chips, and the use of cover crops.
We have also started applying biofertilizers and compost teas that nourish and protect the olive trees through the leaves (what is called foliar application).
And we can monitor all these changes and the quality of our preparations thanks to our soil lab. (yeah :))
We are happy to see the first improvements on our trees and in the veggie garden. Happier and healthier plants tell us that we are going in the right direction.
We confirmed the effectiveness of our regeneration efforts while checking soil under the microscope and discovering a wider range of bacteria, fungi, and protozoa in the samples.
We have also confirmed that we are on the right track by conducting consecutive oil analyses and comparing the levels of compounds such as polyphenols and phenols in our olive oil (see below).
When we claim that our olive oil is medicinal we are not only referring to the fact of not adding any synthetic compounds in the form of pesticides, fungicides, fertilizer, or using tillage therefore disturbing the soils.
We also refer to the impact on the soil and biology contained in it which improve the level of medicinal compounds found later in the oil.
Letâs take a look at the medicinal compounds
Olive oil, apart from having a beneficial lipid composition for human health, is also an excellent source of phenolic substances with excellent health protection properties. European Regulation 432/2012 distinguishes olive oils in terms of their effect on health, depending on the content of these substances. Actually, olive oils with a polyphenol content of 250mg/kg or more can claim to be designated âhealth-protecting food productsâ.
Do you know the polyphenol level of our extra virgin olive oil?
It contains 438 mg/kg of total polyphenols and we are working hard to further increase this value đ
One of the most interesting phenolic compounds are Oleocanthal and Oleacein. They have received much scientific interest due to their outstanding biological properties such as anticancer and anti-inflammatory activity similar to ibuprofen able to inhibit the progress of Alzheimerâs disease. Oleacein presents anti-inflammatory, antiatherosclerotic (Atherosclerosis is the buildup of fats, cholesterol, and other substances in and on the artery walls.), antioxidant, and neuroprotective activity.
All these polyphenols are found in olive oil in different concentrations, depending, among others, on the harvest season and the oil production conditions.
During the 2023 harvest, we produced a very early olive oil to get a product higher in some polyphenols such as Oleocanthal and Oleacein, and it worked: The values doubled in comparison to our oil from 2021.
Unfortunately, the fact of producing the olive oil so early has also an impact on the taste, which becomes less bright and zippy. Oleocanthal can activate some receptors in the oropharyngeal cavity and give a stinging feeling. This feeling is described as âpungencyâ and we feel it at the end of our throats.
Contact us if you want to try some of our early, highly medicinal olive oil (called “Verdone”) or our regular extra virgin olive oil. While both are highly natural, premium quality olive oils, the latter has a slightly more pleasant, rounded taste (although we won’t argue with anyone who prefers the flavor of the medicinal “Verdone”.)
What is the most reliable way to identify a good olive oil?
In permaculture, a guild refers to a carefully designed and interconnected group of plants, animals, fungi, and other elements that work together synergistically in a sustainable and productive ecosystem. The main principle behind guild design is creating a diverse and resilient system, where each element performs multiple functions and supports the overall productivity of the ecosystem.
A permaculture guild typically consists of several key components:
Central Species: At the core of a guild, there is usually a main plant or tree species that serves as the focal point or primary provider of resources. This central species is often a long-lived perennial (for example a tree) that forms the backbone of the guild.
Companion Plants: Surrounding the central species are a variety of complementary plants, known as companion plants. These plants are carefully selected to fulfill specific functions that support the overall health and productivity of the guild. They may provide additional resources such as nitrogen fixation, pest control, pollination, nutrient accumulation, or shade regulation.
Beneficial insects and animals: Guilds incorporate beneficial insects and animals that play important roles in pest management, pollination, soil aeration, or nutrient cycling. For example, certain plants may attract predatory insects that control pest populations, while flowers can attract pollinators like bees and butterflies.
Soil Enhancers: Guilds often include plants or organisms that contribute to soil fertility and health. Nitrogen-fixing plants, such as legumes, convert atmospheric nitrogen into a form that other plants can utilize. Dynamic accumulators, like comfrey or yarrow, draw nutrients from deeper soil layers and make them available to shallower-rooted plants when their leaves decompose.
Mulch and / or Ground Covers: Ground covers and mulch plants are employed to protect the soil from erosion, conserve moisture, suppress weeds, and provide organic matter as they decompose. These plants, such as low-growing herbs or spreading perennials, also serve as living mulch, creating microclimates and optimizing resource utilization within the guild.
By carefully selecting and arranging plant species and other components based on their functional relationships, we aim to create self-sustaining and low-maintenance systems that mimic the balance and efficiency of natural ecosystems. The exact composition of a guild will depend on the specific goals, climate, and local conditions of a particular site.
When it comes to guilds with olive trees, there are several companion plants that can be beneficial in enhancing the overall health and productivity of the olive tree ecosystem.
Here are the companion plants we chose for our olive tree:
I. Comfrey (Symphytum spp.):
Comfrey is an accumulator plant and known for its deep taproots that can mine nutrients from deep in the soil. It accumulates minerals and makes them available to other plants, making it an excellent choice for almost any type of guild. Its huge leaves create lots of shade and help suppress unwanted weeds.
Note: We have placed the comfrey in the shade of the olive tree (north side) as it still is difficult to grow comfrey in our climate. Comfrey generally prefers half-shade and cooler temperatures. With a thick woodchip mulch layer, which is reducing surface temperature considerably, we hope that the comfrey will thrive here.
II. Lavender (Lavandula spp.):
Lavender attracts pollinators and beneficial insects while repelling pests. Its aromatic foliage can also help deter pests from olive trees.
III. Thyme (Thymus spp.):
Thyme is a low-growing herb that can act as a living mulch around the base of olive trees, suppressing weeds and conserving moisture. It also attracts pollinators and repels certain pests.
IV. Rosemary (Rosmarinus officinalis):
Rosemary is a hardy herb that can thrive in the same conditions as olive trees. It attracts bees and other beneficial insects while providing some shade to the soil around the tree.
V. Ballota (Ballota acetabulosa):
The flowers of this herbaceous plant are attractive for bees and when big enough, the leaves will work as a ground cover.
VI. Incense (Plectranthus madagascariensis):
Incense attracts insects, pollinators and butterflies and therefore also birds to the garden. The leaves and branches of this species give off a strong scent and are sometimes used to ward off flies. We’re hoping to keep away the nasty flies that puncture the olives!
VII. Sugar melon (Cucumis melo):
This melon is an experiment – we are very curious as to how well annual vegetables can do around an olive tree. So far, the plant looks quite happy, growing a first little melon.
Remember to consider the specific growing conditions, climate, and region when selecting companion plants for your guild. It’s also beneficial to choose plants that have similar water and sunlight requirements to ensure they thrive together.
This year, 2021, we are happy to have harvested more than two tons of olives. Yeah!
We feel very fortunate to have had the help of volunteers and friends who joined us and enjoyed this experience with us.
We have been harvesting alongside Belgians, English, Dutch, Germans, Ghanaians, Polish, Swedish and Swiss… who offered their time and energy to make this happen đ
Together, weâve picked the olives directly from the trees or we used light machinery to shake the olives into the nets on the ground to be collected immediately.
View from a net used during the olive harvest
After sunset, when all the olives were safely packed in sacks, we drove them straight to the oil mill to be immediately cold-pressed on the same day. This way, the oil is extracted before the fermentation process of the fruit can start, thus preserving all of its amazing properties.
It’s so rewarding to bring the olives to the mill and transform it into the beautiful amazing oil
In order to maintain a maximum quality standard, we do not use olives that have fallen from the trees prematurely, as they usually have already started to ferment or are otherwise damaged or attacked by insects.
Despite having had an extremely hot and dry summer, especially at the beginning, nature is generous and has provided us with high-quality olives from which we have made outstanding oil.
Why do we know it is outstanding?
First of all, there is our own sensory assessment. We have made it a ritual to try the freshly pressed oil every time we come back from the oil mill. Usually, there is a quite complex sensation: on the tongue and palate, the full range of flavors of green olives present itself, while a rather spicy aftertaste unfolds in the throat. This itchy feeling in the throat is mainly caused by a polyphenol called Oleocanthal.
Several studies have shown the medicinal properties of this component but Oleocanthal is just one of many sorts of Polyphenols that can be found in olive oil.
Polyphenols are a group of substances present in plants and in olive oil, with a high antioxidant capacity and with positive effects on our health.
The functions of polyphenols in the body are:
Antioxidant – They act on the skin and fight free radicals, thus helping to slow down cellular ageing.
Anti-inflammatory – They help reduce chronic inflammation and the risk of heart disease.
Protective – They improve the functioning of the inner walls of blood vessels. This produces a cardioprotective effect that reduces the accumulation of platelets.
The amount of polyphenols in olives is higher in young olives that are still green than in more mature ones. This requires a clear decision-making process by the producer in terms of quality vs. quantity. The earlier the harvest, the higher the quality but the lower the quantity of oil.
Our priority is to produce an oil with the highest concentration of beneficial elements, so we harvest early in the season in order to obtain the highest amount of polyphenols.
Agronomic factors affect the quality of olive oil as they directly affect the olive. These factors are classified as follows:
Intrinsic: Those that can hardly be modified, such as the variety of the tree.
Extrinsic: Those that can be controlled, with relative ease, by the farmer himself.
This is where our practice and experience can have an impact on the quality of the oil.
Through the application of regenerative methods, we focus on enhancing soil quality, improving water management, and increasing biodiversity.
So far, we have been adding organic matter around the olive trees, distributed rich compost extracts, and started sowing cover crops with leguminous species (Medicago Sativa, Vicia).
In the coming months, weâll keep adding organic matter which is food for soil microbiology. In turn, these beneficial microorganisms will be making nutrients available for our trees.Â
At the same time, we strive to increase the microbial diversity (especially fungi), with the application of compost extracts to our soils.
We also plan to apply bio-active compost teas on leaf surfaces and stems of the trees in order to protect them from parasites and diseases.
Finally, we try to avoid compaction of our soil by machines such as heavy tractors and keep it covered as much as possible with mulch or cover crops throughout the year.
Itâs an exciting journey for us as we acquire new knowledge and continue learning about new techniques in this field. We will keep you posted about the progress in one of our next articles as soon as our efforts start to yield reliable results.
We hope that you share our enthusiasm and passion for producing high-quality olive oil that not only tastes great but provides such interesting medicinal properties.
We would like to thank all our harvest hands: Carla, Stef, Jana, Hannes, RenĂŠ, Akasia, Sarah, JoĂŤl, Soul, Matthias, Vera, Ramses, Martin, and Corina. Thank you guys, you rock!Â
âEl Cultivo del olivoâ – D. Barranco, R. FernĂĄndez-Escobar, L. Rallo
In a healthy ecosystem (e.g. an untouched forest) nature has established an ongoing carbon cycle with a constant supply of dead organic matter (branches, leaves) falling to the ground where it is being transformed back to become new building material and food for all successive plant life.
With a highly specialised crop system like an olive grove, orchard or even veggie garden, we have to work very hard towards generating a carbon cycle. If weâd only ever extract fruit, veggies or olives and never gave anything back to sustain a carbon cycle, the soil would be depleted of essential organic matter very soon and therefore having a negative impact on the soil and in future crops.
Taking nature as an inspiration, it is important to observe and understand natural processes and then imitate them. The following 5 steps are showing the regenerative techniques weâre currently using to achieve this:
1. SPREADING ORGANIC MATTER
The most abundantly available organic matter is produced by the olive tree itself in the form of leaves and branches.
After pruning the trees, we put all the branches and twigs through a shredder and scatter the wood chips / leaves on the ground along the drip line of the tree.
Along the drip line weâll find the most active root zone. This is where the microbial activity is highest. The microorganisms that are present in the root zone now colonize the added organic material and thus enter into a nutrient exchange with the root system of the trees. This way, we return the lost biomass (from old leaves or pruned branches) back to the natural nutrient cycle.
(Source: www.santabarbaraca.gov)
Why arenât we simply burning the pruned branches like everybody else in this region?
Even though shredding the branches and putting them back as wood chips is a much more laborious process, it is also exponentially more beneficial for the health of our soil.
The act of burning organic matter is interrupting the carbon cycle as the carbon material is lost to the atmosphere and therefore canât be used by the microorganisms to produce more nutrients for new plant growth. Plus, by adding organic matter to the soil, weâre actively boosting the plantâs ability to store atmospheric carbon dioxide (CO2) in the soil (carbon sequestration) and therefore reducing the impact of CO2 as a greenhouse gas instead of adding more CO2 to the atmosphere by burning precious organic matter.
Shredding olive branches with a woodchipper
Giving back to nature instead of burning it
Adding organic matter (in the form of wood chips) around the drip line of an olive tree
2. PRODUCTION OF BIOLOGICALLY ACTIVE COMPOST (solid)
The production of high quality compost (= full with microbial life, especially fungi) is the basic ingredient for a successful regeneration of any land-based ecosystem.
With the active assistance of the present microbiology in a complete compost, we can re-stabilize even the most depleted soils and bring them back to their full, natural potential.Weâre using a hot composting process to do this. It is an aerobic process that needs to be monitored regularly in terms of humidity and temperature.
The compost building process involves layering three different materials:
1. MANURE – with a high nitrogen content, ideally from herbivores such as cows, horses, goats, sheep, rabbits (but chicken manure works, too).
2. GREEN – material with nitrogen content such as green leaves, grass clippings, green stems, kitchen waste, etc.
3. BROWN – carbon material such as dry leaves, dry branches, straw, etc..
By using the right ratio between these materials (normally 10% manure, 30% green and 60% brown) and a good water management of the pile (we want to reach 50% humidity level), weâre able to produce a high-quality compost that contains all the beneficial groups of microorganisms (especially fungi). These microorganisms are going to build a healthy soil, transform minerals and organic matter in plant available nutrients, and protect the plant from pests and diseases.
The type of microorganisms can be determined both quantitatively and qualitatively with the help of a microscope in our soil lab. This is important because it means that you always know exactly which microbiology you are working with, as not all microorganisms are useful for every purpose.
Depending on the type of application, the finished compost can now be spread directly onto the garden beds or around the fruit/ or olive trees. This will positively favor plant growth through the microbial activity around the root zone. In contrast to a classic NPK-fertilization process (where usually “only” certain elements such as nitrogen, phosphorus or potassium are added in the form of salts), the compost application has a far more holistic effect, as the microorganisms also provide the plant with all other nutrients and trace elements and protect them from pest and diseases.
Like with the plants, these additional nutrients and trace elements will be able to nourish and heal our bodies in a holistic sense. We’ll be writing more on nutrient-dense food soon, trying to outline how the beneficial microorganisms in the soil do affect the micro-biome in our guts and how important it is today to know where our food is coming from or how it is being grown.
Left: Fava bean grown in regular soil w no compost Right: Fava bean grown in soil w added compost
The image above shows two fava bean plants from our experimental bed in the garden. They were sown at the same time and had about the same height when they were harvested. The picture to the right shows a massively enlarged root ball. Also the growth of the stems (5 instead of 3) speaks for itself.
Left: Fava bean grown in regular soil w no compost
Right: Fava bean grown in soil w added compost
3. PRODUCTION OF COMPOST EXTRACT (liquid extracted from solid compost)
If one cannot produce enough solid compost with the relatively labour-intensive hot composting process (e.g. for larger areas / systems), there is the option of working with compost extract. The solid compost is placed in a textile bag and “swirled” in a large water tank by blowing air into the water from below. This way, the microorganisms present in the solid compost such as bacteria, fungi strands (hyphae), amoeba or nematodes will be transferred into a liquid medium.
Bacteria feeding nematode
Microarthropod
Fungi hyphae
After a short time, the extract can be applied directly or used for irrigating a garden or an olive grove (i.e. fed into an irrigation system).
Depending on the amount of organic matter in the soil, the added microorganisms will settle there and thus favour the soil building process and the nutrient uptake of the plants.
4. PRODUCTION OF COMPOST TEA (liquid extracted from solid compost)
The brewing process of compost tea is more time-consuming ( 24h / 48h) because, in this case, we need to add food to encourage microorganisms to reproduce in the liquid medium. The application of compost tea pursues a different goal than the administration of compost extract. Sprayed directly onto the plant, the compost tea forms a protective layer (a so-called biofilm) on the stem/leaf surfaces of the plant and protects it from pests and diseases, especially on leaves and fruits. With a sufficiently high ratio of beneficial fungal biomass, compost tea serves as a natural fungicide, i.e. it can prevent or cure most types of fungal infestation on leaves.
On our farm, we use both compost extracts and compost teas – both in our gardens and olive groves.
Brewing of compost tea with adding seaweed to encourage fungal growth
Once the brew is finished, we fill it into transportable 25L containers to wheelbarrow it one by one to its destination
Like with solid compost, the same rule of thumb applies to both types of liquid compost (compost extract & compost tea):
A complete beneficial micro-biome provides the soil with the right biology responsible for building healthy soils and that will in return generate healthy plants. This way, we increase the natural resilience of the plants, so it can resist diseases better and is consequently less likely to be attacked by pests.
Inoculation of organic matter with beneficial microorganisms
5. REPEAT POINTS 1-4 REGULARLY
As long as an ecosystem is not stabilized, i.e. as long as it cannot provide itself with all the necessary nutrients or defend itself against diseases, we must repeat the application of organic matter and solid or liquid composts. In our case, we need to fix many years of conventional agriculture practices where the use of toxic chemicals and the lack of soil management were the ânormalâ.
The good news is that we can regenerate damaged soils in a relatively short period of time if we manage to support and imitate the cycle of life properly.
SUMMARY
If you wish to bring your own soil back to its full potential, it is imperative to first spend some time observing the place, its topography, the water flow, its current vegetation and more to draw the right conclusions for your long-term treatment of the land. We will write more about the observing process / how to read a landscape in another article. For now, let us subsummize the main âingredientsâ for a healthier micro-biome and therefore a richer soil:
1. SPREADING ORGANIC MATTER
Weâre helping nature by imitating / speeding up the natural process of decay and regrowth
2. PRODUCTION / APPLICATION OF BIOLOGICALLY ACTIVE COMPOST (solid)
Weâre actively âproducingâ the right set of beneficial microorganisms and adding them to our gardens or fruit trees to improve soil and plant health
3. PRODUCTION OF COMPOST EXTRACT (liquid)
Weâre multiplying these beneficial microorganisms to improve soil health on a bigger area
4. PRODUCTION OF COMPOST TEA (liquid)
Weâre actively re-producing a particular set of microorganisms (i.e. fungi) for a specific purpose, mainly for protecting plants against pests or disease
5. REPEAT POINTS 1-4 REGULARLY
While a single application of organic matter / compost is good – a regular and recurring application of organic matter in combination with the right set of microorganisms will work wonders!
This amazing piece of land has provided us with medicinal herbs, fruits, and all sorts of edible plants. Most of them have been planted a long time ago by the previous owner; Teresa Fiorenza, a gentle old lady that probably has lived through hard times during and after World War II. Thank you for that, Teresa!
We are blessed with a variety of perennial plants and trees such as loquat, artichokes, mulberries, dates, peaches, plums, apricots, almonds, figs, pears, apples, kakhi, jujube, pomegranates, walnuts, hazelnuts, lemons, oranges, mandarins, cedro and bergamot. What a treat to eat fresh produce directly from a tree or pick from the landâŚ!
But it doesnât stop there.
Continuing Teresaâs legacy and following our own path towards being self-sufficient, we started planting a selection of new trees around the house (such as the sub-tropical Moringa Oleifera and Ceratonia siliqua / Carob, some fig and oak).
Young carob sapling
âThe best time to plant a tree was 20 years ago. The second best time is now.â
â Chinese Proverb
In the previous orchard, we added two varieties of apricot, two varieties of apple, quince, flat peach (Prunus platycarpa), regular peach, mulberry and plum.
Alongside a cliff in a more shaded spot, we have planted white/red/black currant, red gooseberry, blueberry and raspberry.
In the flatter part of our future food forest, we utilize swales, a landform in the shape of a trench and berm running along contour (points of the same altitude) to catch as much rainwater for the trees and plants as possible. In our case we probably should call them semi-swales, as theyâre interrupted and not perfectly along the contour line.
Aerial view of food forest area, showing potential water collection in swales (in blue)
Tree planting
View of the future food forest with freshly dug swales
We dug holes in the âhillâ side of the swale, about 40-50cm deep / wide. A large enough hole for the roots to grow bigger before theyâll eventually hit native soil (which is usually more compacted). Each tree will receive more rainwater, as the ditch of the swale will help infiltrate all the surface water into the root zone.
Planting hole
To help these young trees, we added several layers of seasoned compost in between the native soil. The goal with adding our own compost is to inoculate native soils with a most diverse microbiology (beneficial microorganisms and beneficial fungi).
This is the main reason why we have established our Soil Lab. With the help of a microscope weâre able to assess the quality of our own compost and soils, mostly to identify all beneficial or non-beneficial microorganisms that are part of the Soil Food Web.
This way, weâll simply make better decisions. In the case of planting trees we have utilized a seasoned compost with more fungi than bacteria biomass because trees are lifeforms of a later stage in evolutionary succession. Therefore, trees need nitrogen in the form of ammonium NH4. Fungi are responsible for converting nitrogen into ammonium – that’s why trees prefer fungi dominated soils over bacteria dominated soils.
Adding a rich mix to the planting hole (seasoned compost and topsoil)
Before setting the saplings into their holes, we carefully decompacted the root balls once they were out of their pots to prevent girdling.
Loosening the root ball is important for the development of the roots
What is “girdling”:
When plants grow in nursery containers, their roots hit the wall and begin to grow in a circle. By loosening the root ball and therefore breaking the circling pattern of the roots, the plant will most likely not keep growing circular. We also dug square holes in the hopes that some roots will eventually hit a âcornerâ to easier break the threshold between hole and native soil.
Finally, weâve hammered three fence posts into the ground around each sapling, (making sure not to sever the root ball). Once the summer drought hits this land and the drip irrigation system is on, wild pigs will smell the water immediately (as there is not much water around in summer). Theyâll confuse any wet swale for a conveniently prepared pig bath tub and by happily rolling themselves around in it, they might eventually damage or even uproot small trees. Letâs hope this safety measure will protect the saplings from any boar activity!
Creating a “food forest“ or “edible landscape“
What is a food forest?
A food forest, also called a forest garden, is a diverse planting of edible plants that attempts to mimic the ecosystems and patterns found in nature. Food forests are three dimensional designs, with life extending in all directions â up, down, and out. A food forest does not have to be re-planted year after year. Once it is established, it is generally very resilient.
Source: Resurgent Circles – Seeding Eden (modified by us)
Generally, we recognize seven layers of a forest garden â the overstory (canopy layer), the understory (smaller trees), the shrub layer (bushes), the herbaceous layer (grasses, medicinal plants, etc.), the ground cover layer (perennials like clover, etc.), the root layer (root vegetables) and the vine layer (climbers). Some people also like to recognize an eighth layer, the mycelial layer (mushrooms). Using these layers, we can fit more plants in an area without causing failure due to competition.
The food forest area is marked with a red dotted line
A food forest must be organic. Forest gardens depend heavily on a healthy ecosystem and cannot be sprayed with herbicides or pesticides or have non-organic fertilizers applied. A healthy ecosystem will take several years to establish itself, especially in a city or open farm area. We have to be patient and let nature take care of itself (while providing the necessary food, water, and habitat for all the components of the ecosystem, otherwise they wonât come).
Food forests are a new farming concept in our area, but they have been used for thousands of years in other parts of the world.
Adding some seasoned high-fungal compost to an orange tree
A well-designed forest garden has many benefits:
Planting densely and using ground covers to shade soil and suppress weeds is returning more yield on a given surface area.
Utilizing nitrogen-fixing (i.e. leguminosae, etc.) and nutrient-accumulating plants (i.e. comfrey, etc.), âchop-and-dropâ techniques, and returning wastes to the land will create healthy soils instead of having to buy and add commercial fertilizers.
Planting a diverse array of plants will attract beneficial insects to pollinate the fruit crops and keep pest populations from exploding and causing damage.
By utilizing several ground-shaping techniques we are able to keep rain water on the site.
Depending on the topography, designing for specific placement of plants helps create windbreaks and micro-climates.
Placing emphasis on trees, shrubs, perennials, and self-seeding annuals, the overall amount of work is greatly reduced.
In his book âGaiaâs Gardenâ, Toby Hemenway recommends some of the following soil-building plants for orchards/food forests: